数论,gcd
gcd(i+j, i-j) = gcd(2*i, i+j)
把i+j看出一个整体,得到范围为[i+1...2*i-1]
再看phi[2i]的意义,即[1...2i-1]上与2*i互质的数的个数
i+j的范围刚好是其一半,又引理可知欧拉函数在这个范围内均分成两半。
所以当i为奇数时,2和i互质,根据积性函数的性质,phi[2i] = phi[2] phi[i] = phi[i]
当i为偶数时,由欧拉函数的性质,phi[2i] = 2phi[i]
#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)using namespace std;typedef long long ll;inline int lowbit(int x){ return x & (-x); }inline int read(){ int ret = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) ret = (ret << 3) + (ret << 1) + (ch ^ 48), ch = getchar(); return w ? -ret : ret;}inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }inline int lcm(int a, int b){ return a / gcd(a, b) * b; }template inline T max(T x, T y, T z){ return max(max(x, y), z); }template inline T min(T x, T y, T z){ return min(min(x, y), z); }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 20000005;int _, n, tot, phi[N], prime[N];ll a[N];bool vis[N];void calc(){ phi[1] = 1; for(int i = 2; i < N; i ++){ if(!vis[i]){ prime[++tot] = i; phi[i] = i - 1; } for(int j = 1; j <= tot && i * prime[j] < N; j ++){ vis[i * prime[j]] = true; if(i % prime[j] == 0){ phi[i * prime[j]] = phi[i] * prime[j]; break; } phi[i * prime[j]] = phi[i] * (prime[j] - 1); } } for(int i = 1; i < N; i ++){ if(i & 1) a[i] = a[i - 1] + phi[i] / 2; else a[i] = a[i - 1] + phi[i]; }}int main(){ calc(); for(_ = read(); _; _ --){ n = read(); printf("%lld\n", a[n]); } return 0;}